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the links. The dynamics of the two-link, taking into account the influence of friction forces and the
constrained nature of the control torque, is analysed assuming that the angle between the links is small.
The conventional locomotion algorithm of a two-link is modified to ensure rectilinear displacement of the
two-link. The influence of various geometrical and mechanical parameters of the system on the average
rate of locomotion and on the power consumption during the motion of the two-link robot in a plane is
investigated.
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There is a great variety of modes of locomotion of bodies on a horizontal surface. Most of them are characterized by the fact that
the points of contact of the body with the surface move constantly along the body. For example, the contact point moves continuously
about a wheel, different links of the caterpillar track of a tractor contact the ground at different times, a walking apparatus is supported
on the ground alternately by different legs, etc. However, snakes and certain creeping animals use another mode of locomotion, whose
characteristic feature is contact between the surface and the body along practically its whole length during the entire time of motion.
Several mechanical and biomechanical aspects of the motion of snakes have been examined.!** Snakes move by bending their bodies in a
horizontal plane. A planar multilink can serve as a mechanical analogue that is capable of locomoting in this manner. It has been shown>-7
that a multilink system can move on a rough horizontal plane in any specified direction using only the internal control torques that are
applied to the joints connecting two adjacent links, as well as the forces of dry friction between the multilink and the plane. The possible
modes of locomotion of planar multilinks on a rough plane were investigated, their feasibility conditions were found, and the rates of
locomotion were determined. The dependence of the average longitudinal speed of multilinks on the parameters of the system, namely,
the length and mass of the links, the amplitude of the motions, and the friction coefficient, was investigated in Ref. 8. The parameters were
optimized for a three-link and a two-link to achieve the maximum rate of longitudinal locomotion.

In the papers just cited the locomotion of the two-link and the three-link was built up from periodic motions with alternation of so-called
slow and fast motions occurring during a period. During the slow motions of the two-link, it is assumed that one of the links (the body)
remains fixed, while the other link (the tail) revolves about the central hinge. During the fast motions both links move, but the influence
of the friction force may be neglected because the control torque is fairly large.

The experimental investigations in Ref. 9 demonstrated the practical feasibility of the proposed mode of locomotion. However, when
the magnitude of the control torque is insufficiently large, the duration of the fast phases of motion is not very short, and the influence of
the friction during the fast phases becomes significant.

In this paper, which continues the investigations in Refs 5-9, corrections to the motions of the two-link that appear because of the
constrained nature of the control torque and the influence of the friction force during the fast phases of motion are determined. For
simplicity, the angle between the robot links is assumed to be small. The influence of the parameters of the two-link (the lengths and masses
of the links and the friction coefficient) on such important characteristics of the motion of the robot as the average rate of locomotion and
the energy consumption per unit path length is analysed. This analysis enables an effective choice to be made of the parameters in the
multicriteria problem.
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1. The Mechanical model of a two-link

Consider the two-link system C;CyC, shown in Fig. 1, which is oriented in a horizontal plane. We will call the link C;Cy, which has a
length ay, the body, and we will call the link C;,Cy, which has a length a,, the tail. For simplicity, we will assume that the links are rigid
weightless rods and that all the mass is concentrated at the points Cy, C; and C,. The masses of these points are equal to mg, my and my,
respectively, and their friction coefficients with the surface are kg, k1 and k;. The total mass of the two-link is m=mg +my + my.

We introduce the Cartesian system of coordinates Oxy on the plane. The coordinates of the points of the two-link Cy, C; and C, will be
denoted by xq, ¥o; X1, y1 and x;, y, respectively. The angle between the body and the Ox axis will be denoted by 6, and the angle between
the body and the tail will be denoted by a.

The coordinates of the body and the tail are written as follows:

X| = Xy +a,cos0, Y1 =Yy +asind

Xy = Xg—a,cos(0+a), y,=yy—a,sin(0+a) (1.1)
The coordinates of the centre of mass of the two-link x, y. are expressed in the form

mx, = mgXy + mx; + myx, = mxy + ma,;cos0 — mya,cos(6 + o)

my, = mgyg + my, + myy, = myy + ma;sin6 — mya,sin(0 + ) (1.2)

The angular momentum of the robot about the point O, directed along a vertical axis perpendicular to the Oxy plane, is specified by the
following expression

K = m(Xo)-/O - y()X"o) + mlal(X()eCOSB + yoésin 9)
- mzaz[xo(é) +a)cos(B+a)+ yo(G +a)sin(0 + a)] + ma(y,cosB — x,sin0)
— M@y [0 c0s( + o) — %osin(0 + )] + mar® + myar(d + &) (13)

The control torque M acts at the hinge Cp. It can vary in an arbitrary manner, but its maximum value is limited to Mmax.

2. Elementary motions

The motions of the two-link are built up as a sequence of simple motions, which will be called elementary motions. All the elementary
motions begin from a state of rest of the two-link and also end in a state of rest. The angle o between the body and the tail in each elementary
motion varies monotonically in the range (-, ). We will denote the initial and final values of this angle in an elementary motion by o
and a!, respectively. The elementary motions are subdivided into slow and fast motions. The time of a slow motion will be denoted by Ts,
and the time of a fast motion will be denoted by 7.

The slow motions are motions in which the body remains fixed and the tail turns through a certain angle. The conditions for immobility
of the body during slow motions were obtained in Ref. 7. They have the form

2
myaye + mygkoa, < mgka

2 4 —1\21/2
myazeq + mygkaay + myaa) ®g + (€9 + gkras )’ < mogkoa (2.1)

Fig. 1.
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Here wg and &g are the maximum absolute values of the angular velocity and the angular acceleration of the tail during a slow motion.
If a slow motion is performed with sufficiently small angular velocities and accelerations, these conditions take the simpler form

mykaa, < mkia,, mkya, +ay) < mokoa (2.2)

We will use the term fast motions to refer to motions under which the magnitude of the control torque M is much greater than the
torques created by the friction forces and the time of the motion 7y is fairly short. For fast motions we have

M| > m'gk'a’, m'=max(m,my), a'max(a,ay), k'=max(k,ky), T,<T 2.3)

We will use 3 to denote the maximum angle to which the tail is deflected, T = /a’/(gk’) is the characteristic time for the system (the
oscillation period of a pendulum that is similar in its parameters to the two-link), and &’ is the characteristic angular velocity of the tail
during a fast motion. Then condition (2.3) can be rewritten in the form

M~Jg ~ma’ ~ m'a'ZB/r} > m'a' gk’ (2.4)

where J is the characteristic moment of inertia. Hence we have 3> Tﬂ/"r’z. Since it is assumed in this paper that 3 « 1, the following
quantitative estimate of the required shortness of the time 7 holds

T, ~ Bt v =+a'/(gk') (2.5)

By virtue of conditions (2.3), when the fast motions are examined, the friction forces can be disregarded in a first approximation.
Therefore, the laws of the conservation of momentum and angular momentum hold for these motions. However, at the start of a motion,
the two-link is in a state of rest; therefore, for a fast motion we have

x. =const, y.=const, K=0

The expressions for x¢, y. and K are given by relations (1.2) and (1.3). These conservation laws were used in Ref. [7]7 to determine the
increments of the coordinates of the hinge and the angle 0 in a fast motion when the angle « varies from o to ac1. We have

Axg=m"' {=ma,[cos(6 + AB) — cos 6] + myay[cos(B + AB + o)) — cos(0 + ap)]}

Ayy = m™~ " {—ma,[sin(0 + AB) —sin O] + mya;[sin(0 + AB + o)) — sin(0 + a)]}
AB =— I(p(a)da =vy(og) —y(aLy)
a (2.6)

Here

B
_ (m—mymyaj + D(a) _ do =B B+C (é B
o(ar) B —C. D@ v(B) J‘p(a) o=t e e

1/2 2

2 2 2 22 2
Ai = [B+ - (m|a| + mzaz) ] , Bt = m(mzaz t+ ma, ), Ci =ma + mya,
D(a) = mmya,a,cosa (2.7)

Note that relations (2.6) and (2.7) only hold when the influence of the friction forces during the fast motions can be neglected. The
influence of the friction forces introduces corrections to the increments of the coordinates obtained. We will estimate their order by taking
the angle 0 as an example. Taking into account relations (2.4) and (2.5), we have

60 ~ m'gk'a't?/] ~ (gk'/a')t} ~ ‘tzf/‘t(z] ~ [32
Similar estimates that are quadratic in 3 also hold for the corrections to the other variables.
3. Algorithm of the longitudinal locomotion of the two-link

We will describe the sequence of elementary motions that comprise the longitudinal locomotion of the two-link.
Suppose the two-link is at rest and has the form of a segment parallel to the x axis (state 0) in Fig. 2 at the initial time. We have 6 =a =0
in state 0. In addition, we take xg =y =0 in this state.

1. We perform a slow motion, during which the tail turns through an angle 3 and the body remains fixed. The two-link transfers into state
1 in Fig. 2, in which

0=0, a=B, xg=y,=0

2. We perform a fast motion, during which the angle a varies from f3 to 0. The two-link transfers into state 2 in Fig. 2. In this state, according
to relations (2.6), if the friction forces have no influence during the fast motion, we have
0=v(B), xo= m_l[mlal(l — €0sY) + myay(cosy — cospP)]

Yo = m_'[—m,alsiny+m2a2(siny——sinB)] (3.1)
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Fig. 2.

In Fig. 2 only the changes in the angle « are noted, and the changes in the angle 6 and the coordinates x and y, are not shown.
3. Using a slow motion, we vary the angle o from 0 to —[3. The two-link transfers into state 3 in Fig. 2. The angle 6 and the coordinates xq
and yo remain unchanged and are specified by relations (3.1).

4. Using a fast motion, we vary the angle o from —f3 to 0. The two-link transfers into state 4 in Fig. 2. In this state, according to relations
(2.6), we have

0=0, xy= milmzaz[cosy —cosB+1—cosy —B)|

yo = m 'mya;[siny —sinp —sin(y — B)]

Thus, the two-link is again a segment parallel to the Ox axis, but it moves forward and undergoes a lateral displacement (yg # 0).In
order to eliminate this displacement, the motions performed are repeated in the reverse order, that is, motions 3, 4, 1 and 2 are performed
(as shown in Fig. 2). After these motions are performed, the two-link compensates the lateral displacement, and the result of the entire
sequence of motions is only locomotion in the longitudinal direction.

The displacement of the two-link along the Ox axis during the entire cycle amounts to’

/= 8m_]mzazsin(B/Z)cos(y(B)/2)sin[(B —-v(B))/2] (32)

The function () is specified by relation (2.7).
The period of the motion equals

T=4(‘Es+’tf),‘[s >1r (3.3)

The average speed is v=1/T.

4. Slow and fast motions

We will specify the laws of variation of the angle « in the fast and slow phases of motion. We recall that the time of a slow motion is
denoted by 75 and the time of a fast motion is denoted by 7;. We will assume that in both phases the angular acceleration is constant in
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Fig. 3.

magnitude and changes sign in the middle of the phase, so that we have

2
i) - {ssr /2,

0<t<1y/2

asrf/4 —e(t— ts)z, T,/2 <1t <1

a(r) =

ey /4—gs%/2, 0<t<1,/2

Sf(f—ff)2/2,

T/2<t <1y

17

(4.1)

(4.2)

for slow and fast motions, respectively. Here &5 and &f are the maximum absolute values of the angular acceleration for the slow and fast
phases, respectively. For the maximum absolute values of the angular velocity during these motions, we have ws = &s7s/2 and wy= g¢77/2.
Since the total change in the angle a(t) during each elementary motion is equal to 3, the following relations hold:

B=e,i/4=c,1,/4

(4.3)

Fig. 3 shows the law of variation of the angle « (relation (4.1) in the slow phase on the left and relation (4.2) in the fast phase on the

right).

5. Lagrange’s equations and their linearization

In the generalized coordinates

g =X, 2=Yp §3=9, qs=0a

we write Lagrange’s equations for the two-link

miy — ma,Bsin® — m,a,Gzcose + myax(® + &)sin( + o)

+ mzaz(é + d)zcos(e +a) =0,

myy + mafcos® — mlalézsine — mayay(® + &)cos(0 + o)

+ m2a2(6 + ('x)zsin(() +o) =0,

2% 25 s - oo
ma; 0 + myay(0 + &) + ma,j,cos0 — ma;xysind

+ mMya,Xysin(0 + a) — mya,j,cos(6 + a) = Oy

mya3(® + &) + myay[Fysin(0 + o) — jpcos(0 + )] = Oy

Here Qx, Qy, Qg and Q, are the generalized forces specified by the dry friction forces and the control moment in the hinge.
To simplify the analysis, we will replace the third equation in the system by the difference between the third and fourth equations:

mlalzé + may(j,c080 — x,sin0) = Qg — Oy

(5.1)
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We denote the projections of the friction forces acting at the point C; of the two-link onto the coordinate axes as F! and Fy!, respectively
(i=0, 1, 2). Then the expressions for the generalized forces take the form
0 1 2 0 1 2
O.=F +F+F., Q,=F/ +F +F
. . 2
Qg = —Fx'alsme + Fy'alcose + szazsm(e +a) - Fyaycos(0+a)
2. 2
Q. = Fyaysin(0 + o) — Fyaycos(0+a) + M (5.2)
Here, by Coulomb’s law, we have
Fio gk opi_ KMIL g o
X k] y ’ s b
2, 2 2, 2
xi ty; xXi tYy;

We will now determine the order of magnitude of the friction forces that appear when there is a small change in the angle a. For this
purpose, we will estimate how great the increments of the coordinates x¢ and yg are from conditions (2.6). Substituting the values

oy=0, 6=0, a;=p, A6=-y(PB)
we obtain the following result
Ax; = O(B%), Ay, = O(B)

Thus, in order of magnitude we have Ax; ~ 3 Ay;. A similar relation holds for the velocities, and thus x;~y;. Therefore, for the friction
forces we have

Fl=0@), F,=0(1)

Now we change to dimensionless variables using the replacements

1l v Al Ll 1 a
a=Ba’, 0=B0", xo=Baxoy yy=Bayy, t=1¢", T0= "Ekl—
0

F; = m()ng'i’ Fy{ = mong'i, M = mygaM’
m m a
H=Ln" py=—L, M2=—2, A==
my my my a, (5.3)

During the fast and slow motions, a varies in the range from 0 to 1.
After making these replacements, we linearize Lagrange’s equations, assuming that the angle [ is small, and we omit all the primes on
the variables introduced. Note further that BFy! = O(32). After simplifying, we obtain

kPpsy = F + Fl+ FLL ko — iy + 0w —App) | = F) + Fy + F)
koPri(0+6) = Fy = M, kBuA[A(©O+6) ~Jol = M —LF; (5.4)

We will examine these equations for the slow and fast motions, confining ourselves to an analysis of only the lateral and angular
motions. Thus, the longitudinal motions will henceforth not be considered, and the last three equations in (5.4) will be analysed.

6. Influence of the friction force on the locomotion of the two-link during slow motion

We will consider the slow motion of the two-link robot from the state yo=0, 6 =0, « =0 to the state yp=0, =0, a =3 and estimate the
time needed to complete this motion. We will consider the motion in the linear approximation with respect to 3 in the dimensionless
variables (5.3).

In the slow phase xo(t)=yo(t) = 0(t)=0; therefore, the linearized Lagrange equations (5.4) reduce to the single equation:

kBpr’a =M - FA F] = —kz—.zy—Z—3 ~ kycosa = k,
\/xz +y;

Hence we have

kPuoA i = M — k, (6.1)

In the dimensionless variables (5.3) the law of variation (4.1) of the angle o during the time of a slow motion 7 is written in the form
a(r) {ssrz/(hf), 0<t<1,/2

e/4— gt —1,)/Q1D), 1/2<t <1, (62)

Here 75 and &; are also dimensionless, and &; =4, since the angle o should vary from 0 to 1.
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For the law of variation (6.2) of the angle o we have

maxd = ss/(21§) = 2/1?, maxa =2/t, te (0,1
! t (6.3)

and from Eq. (6.1) we obtain
. T 2,2 s 2,2
M(t) = k2 - 4Slgn(t _';)kOBu2}“ /Ts, Mmax = k2 +4k0Bu2}\. /TS

Substituting expressions (6.3) into dimensionless inequalities (2.1), we find the conditions that specify the minimum time of motion in
the slow phase. We obtain the shortest possible time of slow motion

T;nin = J4k )\’max(\/ A ’\/ At
: Vi ki = kaptod N ko — kabtp(A +1)

and it corresponds to the maximum attainable dimensionless torque for slow motion

My = ky + dkoBroh’/;

(6.4)

The radicands in equality (6.4) must be positive. This is equivalent to conditions (2.2).
7. The Influence of the friction force on the locomeotion of the two-link during fast motion

We will consider the fast motion of the two-link robot from the state yo=0, 6 =0, a =3 to the state yp = Ayg, 6 = A8, o =0 and estimate
the corrections to the final position 80 and dy;, which appear due to the finite time of a fast motion 7. They are caused by the constrained
nature of the maximum torque created by the actuator located on the central link: Mmax =max M(t) at t € [0,7]. As before, we will use an
approximation that is linear in the small angle 3 and perform the calculations in the dimensionless variables defined by equalities (5.3).

We will first solve the problem when there are no friction forces. After solving the problem for the accelerations, the last three equalities
in (5.4) take the form

. A+, A OWAFAFU .,
= M=GM, B6=-—"—""5IM=G,M
Byo ko ¥ B v 0

2 2
Bd:HZ)" +H1(2“2(>"+1) +I)M:GQM
A kopp, (7.1)

As in the case of slow motion, we assign the law of variation of the angle a during the time of fast motion 7¢ in the form

" g,/ e,/ (21y), 0<t<1,/2
o(r) =
et —10)7/(21)), 1/2<t<1,
Then, from the last equation in (7.1) we obtain the law of variation of the control torque

M = 4B2 sign(r —%j

(xrf

Thus, MO nax =4B/(Ga7f2). We find the dependence of the time of fast motion on the maximum torque:

4k0H1H27\2 B
2
A+ ok + 1)+ 1) My (7.2)

2
Tf =

Knowing M, from Eqs (7.1) we can easily find the increments of the coordinates of the two-link after the time of fast motion 7, when
there are no friction forces:

G
Agyo =2, AP = G
G, Gy (7.3)

It can be verified that the linearization of expressions (2.6) leads to the same increments, which confirms the correctness of the
linearization of the original system.
Now we introduce friction forces into the system in an approximation that is linear in 3:

0 1 2
Fy = —kO’ Fy = ——kl, Fy = k2 (74)

The signs were set in accordance with the fact that during the motion under consideration yg < 0,y1 < 0, and y, < 0.
The last three equalities in (5.4) take the form

koB[Mio — Gihpy +0(y —Apa) | = ky — ky — kg
kOB“I(é+d): =M — ki, kBpA[A(D+6) - Fol = M -k,
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We will solve these equations for the second derivatives:

Byo =1, + G,M, BO=ry+GeM, P& =r,+G,M (7.5)

Yo
For the coefficients we have
kit ko ko + (KA k(A + D)y
b o
kot Koptip o) (7.6)

r, =—1, ry

Adopting the prior law of variation of the angle a(t), for the control torque we obtain the expression

M=r + 452 sign(r —t—f]
arf 2

For the maximum absolute value of the torque, we have
4B
2

Gqu

Mmax =Tt

The increments of the coordinates of the two-link are specified, in turn, by the expressions

G o G 7
Ao =2 +(ry, + Gy ) =L, AO =20+ (r + Goro) =L

Go TP Go 2p (7.7)
Therefore, the corrections to the changes in the coordinates that appear due to the friction forces are written as follows:
2 2
80 = Ayy — Ag = (1, + G, 1)L, 80 = AB— Agd = (ry + Gory)—L
Vo = Ao Vo = (ry“ + yola D) > - oY = (rO Ora)2_
B p (7.8)

If we substitute the time of fast motion 75 as a function of the maximum torque Mmax into these expressions, we obtain

Ty + G)’nra S50 =2 ry + Ge"a
Go(M ax — 1) Go(M yax — 1) (7.9)

Thus, in dimensional coordinates the corrections to the increments of the lateral displacement and the angle 6 are of the order of
O(3/Mmax)- Since, according to relations (2.3), the value of Mnayx is large (for example, of the order of 1/(), these corrections become
quadratic in 3. In this case the influence of the friction force can be neglected. If Mmax = 0(1) (but is large enough to overcome the static
friction force for all the links in the two-link), the influence of the friction force becomes linear in f3.

After a second sequence of slow and fast phases, during which the angle o varies from -3 to 0, the corrections found simply change
sign, because the expressions for the friction forces remain unchanged (only the sign changes) as a result of the linear additions to the zero
values of yg and 0 that appear after the first sequence.

Thus, even the unmodified locomotion algorithm of the two-link” leads to elimination of the corrections to the changes in its coordinates
in the linear approximation.

dyy =

8. Energy consumption per unit of path length and average speed of the two-link

We recall that the dimensionless parameters of the system specified by the last three formulae in (5.3) are used. We introduce the
dimensionless energy as E=mgga; BE’ (the prime will henceforth be omitted). We will also assume that the friction coefficients ko, k1 and
k; lie in the interval [k_ k+]. All the calculations will be performed on the assumption that the maximum angle of deflection of the tail of
the two-link {3 is small.

As the two-link moves, energy is expended during the slow and fast motions to overcome the friction forces. We will find the energy
consumption during one cycle of slow and fast motions. During one slow motion, the energy expended by the tail is

AE, = F]Ay3 = koh
During one fast motion, the energy expended by the tail (we use formulae (7.3) for the coordinate increments) is

s Kikah + p(Ky + koA + 1))
A+ + sl + 1)

AE; = F)Ay{ + F)Ay{ + F)Ay{ =

Motion along the Ox axis is ignored when calculating the energy consumption because the losses in this motion are an order of magnitude
lower than the losses in the motion of the parts of the two-link along the Oy axis. The corrections (7.9) to the displacements of the parts
of the two-link that appear due to the constrained nature of the control torque will also be neglected in view of their small magnitude.

After a complete cycle of motions by the tail of the two-link described in Section 4, the displacement of the robot in the direction of
motion is (see dimensionless expression (3.2), which has been linearized in 3)

= 2BripA (oA + 1) +1)
m(pah? + o+ pga(h+ 17
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The energy consumption per unit of path length during the complete cycle of motions equals

AE, + AE; kik + kopy(A + 1)*"2(7»2 +H|(7v+1)2)
/ Bri(raA +py +1) (8.1)

As expected, the energy consumption increases as the angle 3 decreases. We note at once that the expression is linear in the friction
coefficients. For this reason, for the smallest energy consumption, the friction coefficients should have the smallest attainable values, but
they should be such that conditions (2.2), which ensure the possibility of slow motions, are satisfied.

The average speed of the two-link is specified by the expression

v=1/(ts+1y))

The values of 7s and Trare specified by expression (6.4) and (7.2), respectively. Since we decided to neglect the influence of the constrained
nature of the control torque on the fast motion, the relation 7; ~ 375 holds. Therefore, in a first approximation we have

V:/{mmin[\/ A \/ A+l

ki — kapok kg — koA + 1)

} (8.2)

As the angle {3 is increased, the speed increases as \/E Therefore, to increase the average speed and to reduce the energy consumption,
the angle B must be increased. It was previously® found that the maximum speed of a two-link in the case of an unconstrained control
moment is obtained when k; =k_ and kg = k; =k for an arbitrary (not small) value of 3. Therefore, a decrease in k, also causes an increase
in speed and a reduction in energy consumption.

We will investigate numerically the dependences of the average speed and the energy consumption on the following parameters of the
system: the length ratio, the mass ratio and the friction coefficients.

We choose the following starting values for the parameters

B=0.1, A =05, kg=k =k, =04, p,=0.5 p, =1 (83)

Then, we vary one of the parameters in burn, while fixing the starting values of the remaining parameters in (8.3), and construct a graph
by plotting the energy consumption along the horizontal axis and the average speed along the vertical axis.

In Fig. 4 the parameter \, which is the ratio of the lengths of the tail and the body, varies in the range from O to 1. It can be seen that
there is a value \ ~ 0.3, above which the energy consumption increases and the speed drops, i.e., it would be pointless to increase \ above
this value.

In Fig. 5, the parameter .1, which is the ratio between the masses of the body and the central hinge, varies in the range from 0.25 to 5,
and p,, which is the ratio between the masses of the tail and the central joint, varies in the range from 0.1 to 2/3. The starting value ., =0.5
was fixed on the graph for ;. Conversely, the value w; =1 was fixed on the graph for w,. The best value p; ~ 0.25 is very close to the
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critical value, after which completion of the slow motions is impossible. There is a value p; ~ 0.26, above which the energy consumption

increases and the speed drops as ., is increases.

In Fig. 6 the parameter kg, which is the friction coefficient of the central hinge, varies in the range from 0.3 to 0.9, and kq, which is
the friction coefficient of the body, varies in the range from 0.1 to 0.9. The value kg =0.3 is the minimum admissible value for this friction
coefficient. The value k; = 0.1 is the minimum admissible value for this friction coefficient. After the value k1 ~ 0.14, as this friction coefficient

is increased, the speed increases only slightly, while the energy consumption increases rapidly.

The kinks on the graphs are associated with the transition in expression (6.4) for the time of a slow motion from one argument of the

maximum to another.
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9. Conclusions

The influence of the friction forces on the dynamics of the snake-like motions of a two-link in a plane with a simple control algorithm
based on alternating fast and slow phases of motion has been analysed. It has been shown, in the case of a small deflection angle of the
tail of the two-link, that the corrections to the lateral displacement and the angle of rotation of the body are small high-order corrections.
The maximum possible torque that can be applied to the central joint without violating the feasibility conditions of the slow motions
has been determined. The influence of the friction forces has been taken into account in determining the maximum value of the torque
required to perform a fast motion in a specified time. The average speed and energy consumption during motion of the two-link have
been estimated as functions of various characteristic parameters, including the friction coefficients, geometrical parameters and mass
parameters. Guidelines regarding the ineffectiveness of using specific ranges of values for designing efficient two-link robots have been
presented for certain parameters.
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